Organic & Biomolecular **Chemistry**

Cite this: Org. Biomol. Chem., 2011, **9**, 7671

Synthesis and activity of the archazolid western hemisphere†

Ann B. Tran,*^a* **Geoffrey C. Melly,***^a* **Ryan Doucette,***^b* **Brook Ashcraft,***^b* **Leanne J. Sebren,***^a* **Nathan Havko,***^b* **Jeffery C. Young***^b* **and Gregory W. O'Neil****^a*

Received 23rd August 2011, Accepted 5th September 2011 **DOI: 10.1039/c1ob06446k**

A convergent and scalable synthesis of the archazolid western hemisphere has been completed. The V-ATPase inhibitory activity of this compound along with a previously prepared eastern domain was then tested using a convenient *Arabidopsis***-based V-ATPase assay.**

The vacuolar-type H⁺-ATPase (V-ATPase) is among the most widely distributed ATP-driven ion pumps in nature. It is expressed in all eukaryotic cells, where it participates in the acidification of intracellular organelles that are essential for many cellular processes.**¹** The elucidation of the physiological role of the V-ATPase has revealed the important function these proteins play in a wide array of pathological processes including osteoporosis,**²** renal acidosis,**³** and cancer.**⁴** Thus, the V-ATPase is regarded as a promising pharmacological target and selective inhibitors of this enzyme represent important leads toward a better understanding of these diseases and the development of effective drugs for their therapy.

In 2003, as part of a program directed toward the identification of new anti-cancer agents, Höfle and coworkers reported the isolation of two novel cytotoxic compounds from the culture broth of strains of the myxobacteria *Archangium gephyra*. **⁵** Archazolids A (**1**) and B (**2**) showed high activity against a number of human and mammalian cancer cell lines with IC_{50} values ranging from 0.1 to 1 ng m⁻¹ (Fig. 1). An incubation of $PtK₂$ potoroo cells with archazolid A (5 ng ml^{-1}) led to the formation of vacuoles in the endoplasmic reticulum, a phenomenon that is typical for inhibitors of V-ATPases. Later studies of $PtK₂$ kidney cells incubated with archazolid A showed that these cells lost intact acidic lysosomes, also suggesting that the archazolids interfere with vacuolar-type ATPase.⁶ This was confirmed by measuring the inhibitory activity of archazolids A and B on purified V-ATPase from *M. sexta*. Both archazolids A and B were shown to inhibit the activity of the purified V-ATPase holoenzyme halfmaximally at a concentration of 20 nM (IC₅₀ ca , 0.8 nmol per mg

Fig. 1 Archazolid natural products.

enzyme), in the same range as the well-established plecomacrolidic V-ATPase inhibitors bafilomycin**⁷** and concanamycin.**⁸** Previous studies had demonstrated that the archazolids share, at least partially, the same binding site within subunit c of the V_0 domain as bafilomycin and concanamycin.**⁶** Very recent point mutation experiments combined with the use of a labeled semi-synthetic archazolid derivative, however, indicate that archazolid V-ATPase binding is strikingly different than the plecomacrolides.**⁹**

Stereochemical assignment of archazolids A and B was first reported in 2006,**¹⁰** and was later confirmed by total synthesis.**¹²** Since their initial discovery, the family has been extended to include archazolids C–F.**¹¹** Each of the archazolids share a 30 carbon linear polyketide backbone that has been incorporated into a highly functionalized 24-membered macrolactone. Embedded within the core is a $C_9 - C_{14} Z, Z, E$ -conjugated triene unique to the archazolids. Recently our group reported a direct approach to this subunit utilizing a tandem lactol TMS-allylation/Peterson elimination and a completion of the $C_3 - C_{13}$ fragment (3).¹³

Elaboration of **3** into archazolids A and B was envisioned to occur by first olefination at C_2-C_3 followed by macrocycle formation by ring-closing metathesis (RCM) (Fig. 2). Herein we report a concise synthesis of the remaining $C_{14}-C_{23}$ and sidechain fragment (**4**) common to each of the archazolids required to complete our synthesis. Key disconnections include Horner– Emmons (HWE) olefination at $\Delta^{18,19}$ and side-chain installation by addition of a suitable organometallic reagent derived from thiazole **5**. Additionally, a tractable *Arabidopsis*-based V-ATPase assay has been developed that was then used to test the V-ATPase

a Department of Chemistry, Western Washington University, Bellingham, WA, USA. E-mail: oneil@chem.wwu.edu; Fax: 01 360 650 2826; Tel: 01 360 650 6283

b Department of Biology, Western Washington University, Bellingham, WA, USA

[†] Electronic supplementary information (ESI) available: Complete experimental details including spectroscopic and analytical data for compounds **4**, **11**, **12**, **16**, **17**, **18**, **19**, and **20**, Mosher ester data for compound **4**, and V-ATPase assay dose response curves and methods for compounds **3**, **20**, and **21**. See DOI: 10.1039/c1ob06446k

Fig. 2 Archazolid retrosynthesis.

inhibitory activity of both the "eastern" and "western" archazolid hemispheres.

Our synthesis began from known Weinreb amide **7**, **¹⁴** prepared on a ten-gram scale by a titanium-mediated Evans' aldol reaction with acrolein (**8**) (Scheme 1).**¹⁵** Conversion to the ketophosphonate **9** then allowed for a Horner–Emmons coupling**¹⁶** with (*R*)-Roche ester derived aldehyde **10**. **¹⁷** A comparison of deprotonation methods revealed that Ba(OH)₂·8H₂O¹⁸ proceeded with the highest *trans*-selectivity and has delivered multigram quantities of **11**. Reduction of the ketone with $NaBH_4$ gave the corresponding alcohol with >10 : 1 diastereoselectivity as determined by NMR analysis.¹⁹ After some experimentation, it was found that methylation of the newly generated hydroxyl-group could be performed on gram scale by deprotonation with a freshly prepared precooled solution of LiHMDS followed by alkylation with methyl triflate (MeOTf) at -78 *◦*C. Allowing the reaction mixture to warm resulted in a significant amount of 1,3-silyl migration**²⁰** and a mixture of products. Selective removal of the primary TBS-group**²¹** in **12** and oxidation with Dess–Martin periodinane**²²** then completed a synthesis of aldehyde **6**.

Scheme 1 Gram-scale synthesis of aldehyde **6**.

The final fragment was prepared from known ketothiazole **13**, **²³** available in one step from commercially available 2,4 dibromothiazole (Scheme 2). Enantioselective reduction**²⁴** and

Scheme 2 Thiazole fragment coupling.

TES-protection gave bromide **14**. Treatment of **14** with *tert*butyllithium resulted in a rapid lithium–halogen exchange**²⁵** giving the corresponding highly-colored organolithium that added smoothly to **6** producing an inseparable mixture of **15** and **16** with modest Felkin-control (*vide infra*).

Oxidation of this mixture with Dess–Martin periodinane gave **17** which then allowed for installation of the desired C_{23} -*O* stereocenter by selective hydride addition (Scheme 3).**²⁶** It was found that L-Selectride gave the best balance of yield to selectivity, affording **16** in 73% yield as a 10 : 1 (NMR) mixture of diastereomers (Table 1).**²⁷**

Scheme 3 Installation of the C_{23} -*O* stereocenter.

Completion of the fragment was then achieved in four steps from **16** by acylation of the free hydroxyl followed by selective TES-deprotection affording alcohol **18** (Scheme 4). Installation of the carbamate and removal of the acetate with DIBAL-H delivered **4** in 62% overall yield from **16**.

Scheme 4 Completion of the archazolid western hemisphere.

It was thought that the dense functionalization and various rigidifying elements within **4** might render compounds of this type V-ATPase inhibitors themselves.**²⁸** To test this, the V-ATPase inhibitory activity of compounds **20**, **21**, and the previously prepared $C_3 - C_1$ fragment (3) was measured using a convenient *Arabidopsis*-based V-ATPase assay (Scheme 5).

Scheme 5 Synthetic western hemisphere derivatives.

Acidification of the plant vacuole by the V-ATPase facilitates cell expansion by generating turgor pressure through solute accumulation.**²⁹** Selective inhibition by bafilomycin A, in fact, was a key component in identifying the first plant V-ATPase**²⁹** and it is known that the selective inhibition of concanamycin A inhibits *Arabidopsis* cell elongation in a dose dependent manner.**³⁰** The first V-ATPase mutant identified in plants, *det3*, exhibits a reduction in subunit *c* and in V-ATPase activity, resulting in the loss of the etiolated (dark) growth habit in seedlings.**³¹** A key component in the etiolated habit is stem elongation driven by V-ATPase mediated cell expansion. Cell growth in *Arabidopsis* seedlings was assayed by measuring etiolated seedling stem length in the presence of varying amounts of inhibitors (Fig. 3).**³²** Downloaded that the clear functional various for the isominal by clear
Angers on the intervention of the intervention of the intervention of the intervention of the externe intervention of the method of the intervention o

Fig. 3 *Arabidopsis* hypocotyl-growth V-ATPase assay.

While the plants proved highly sensitive to the known V-ATPase inhibitors bafilomycin A and concanamycin A, none of the synthetic archazolid derivatives displayed any significant V-ATPase inhibitory activity in this assay.**³³** This data would suggest that, like the plecomacrolides,**³⁴** macrolactone formation is essential for archazolid V-ATPase binding and inhibition.

Conclusions

A convergent synthesis of the archazolid "western hemisphere" has been completed that is particularly well-suited for the largescale preparation of advanced intermediates and access to a series of side-chain analogues. The V-ATPase inhibitory activity of this material was then evaluated using a tractable *Arabidopsis*-based V-ATPase assay. Assay results indicate that the macrocyclic structure of the archazolids is critical to their V-ATPase inhibitory activity. Efforts are ongoing to complete the synthesis of the natural product and analogues for future SAR studies using our plantbased assay method.

Acknowledgements

Generous financial support from Western Washington University, M.J Murdoch Charitable Trust and Research Corporation departmental development grant, and the Dreyfus Foundation (fellowship to L. S.) is gratefully acknowledged.

Notes and references

- 1 (*a*) Q. Al Awqati, *Annu. Rev. Cell Biol.*, 1986, **2**, 179; (*b*) D. K. Stone and X. S. Xie, *Kidney Int.*, 1988, **33**, 767; (*c*) N. Nelson and D. J. Klionsky, *Experientia*, 1996, **52**, 1101; (*d*) W. R. Harvey and H. Wieczorek, *J. Biol. Chem.*, 1997, **200**, 203; (*e*) T. H. Stevens and M. Forgac, *Annu. Rev. Cell Dev. Biol.*, 1997, **13**, 779.
- 2 (*a*) H. Blair, S. Teitelbaum, R. Ghiselli and S. Gluck, *Science*, 1989, **245**, 855; (*b*) P. H. Schlesinger, H. C. Blair, S. L. Teitelbaum and J. C. Edwards, *J. Biol. Chem.*, 1997, **272**, 18636.
- 3 (*a*) D. Brown and S. Breton, *J. Exp. Biol.*, 2000, **203**, 137; (*b*) S L Gluck, D M Underhill, M Iyori, L S Holliday, T Y Kostrominova and B S Lee, *Ann. Rev. Physiol.*, 1996, **58**, 427; (*c*) C. A. Wagner, K. Finberg, S. Breton, V. Marchanzky, D. Brown and J. Geibel, *Physiol. Rev.*, 2004, **84**, 1263; (*d*) F. E. Karet, K. E. Finberg, R. D. Nelson, A. Nayir, H. Mocan, S. A. Sanjad, J. Rodriguez and F. Santos, *Nat. Genet.*, 1999, **21**, 84.
- 4 (*a*) T. Torigoe, H. Izumi, T. Ise, T. Murakami, H. Uramoto, H. Ishiguchi, Y. Yoshida, M. Tanabe, M. Nomoto and K. Kohno, *Anticancer Drugs*, 2002, **13**, 237; (*b*) S. R. Sennoune, K. Bakunts, G. M. Martínez, J. L. Chua-Tuan, Y. Kebir, M. N. Attaya and R. Martínez-Zaguilán, Am. J. Physiol. Cell Physiol., 2004, 286, C1443.
- 5 (*a*) G. Hofle, H. Reichenbach, F. Sasse, H. Steinmetz, German Patent ¨ DE 41 32 951 C1, 1993; (b) G. Höfle, H. Reichenbach, F. Sasse and H. Steinmetz, *J. Antiobiot. Chem.*, 2003, **56**, 520.
- 6 M. Huss, F. Sasse, B. Kunze, R. Jansen, H. Steinmetz, G. Igenhorst, A. Zeeck and H. Wieczorek, *BMC Biochem.*, 2005, **6**, 13.
- 7 For select references see: (*a*) G. Werner, H. Hagenmaier, H. Drautz, A. Baumgartner and H. Zahner, *J. Antibiot.*, 1984, **37**, 110; (*b*) B. P. Crider, X. S. Xie and D. K. Stone, *J. Biol. Chem.*, 1994, **269**, 17379.
- 8 For select references see: (*a*) H. Kinashi, K. Someno and K. Sakaguchi, *J. Antibiot.*, 1984, **37**, 1333; (*b*) M. Huss, G. Ingenhorst, S. Konig, M. ¨ Gaßel, S. Dröse, A. Zeeck, K. Altendorf and H. Wieczorek, J. Biol. *Chem.*, 2002, **277**, 40544.
- 9 S. Bockelmann, D. Menche, S. Rudolph, T. Bender, S. Grond, P. von Zezschwitz, S. P. Muench, H. Wieczorek and M. Huss, *J. Biol. Chem.*, 2010, **285**, 38304.
- 10 J. Hassfeld, C. Fares, H. Steinmetz, T. Carlomagno and D. Menche, *Org. Lett.*, 2006, **8**, 4751.
- 11 (*a*) D. Menche, J. Hassfeld, H. Steinmetz, M. Huss, H. Wieczorek and F. Sasse, *Eur. J. Org. Chem.*, 2007, **7**, 1196; (*b*) D. Menche, J. Hassfeld, H Steinmetz, M. Huss, H. Wieczorek and S. Sasse, *J. Antibiot.*, 2007, **60**, 328; (*c*) N. Horstmann, S. Essig, S. Bockelmann, H. Wieczorek, M. Huss, F. Sasse and D. Menche, *J. Nat. Prod.*, 2011, **74**, 1100.
- 12 (*a*) D. Menche, J. Hassfeld, J. Li and S. Rudolph, *J. Am. Chem. Soc.*, 2007, **129**, 6100; (*b*) D. Menche, J. Hassfeld, J. Li, K. Mayer and S. Rudolph, *J. Org. Chem.*, 2009, **74**, 7220; (*c*) P. A. Roethle, T. C. Ingrid and D. Trauner, *J. Am. Chem. Soc.*, 2007, **129**, 8960.
- 13 G. W. O'Neil and M. J. Black, *Synlett*, 2010, 107.
- 14 J-A. Funel and J. Prunet, *J. Org. Chem.*, 2004, **69**, 4555.
- 15 M. T. Crimmins, B. W. King and E. A. Tabet, *J. Am. Chem. Soc.*, 1997, **119**, 7883.
- 16 (*a*) W. S. Wadsworth, Jr., *Org. React.*, 1977, **25**, 73; (*b*) J. Boutagy and R. Thomas, *Chem. Rev.*, 1974, **74**, 87; (*c*) B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, **89**, 863; (*d*) S. E. Kelly, In *Comprehensive Organic Synthesis*, B. M. Trost and I. Fleming Ed., Pergamon, Oxford, 1991, Vol. 1, pp. 729–817. Downloaded by University A grand by Books Controlling Controlling
	- 17 A. K. Mandal, J. S. Schneekloth, K. Kuramochi and C. M. Crews, *Org. Lett.*, 2006, **8**, 427.
	- 18 (*a*) J. V. Sinisterra, Z. Mouloungui, M. Delmas and A. Gaset, *Synthesis*, 1985, 1097; (*b*) I. Paterson, K.-S. Yeung and J. B. Smaill, *Synlett*, 1993, 774.
	- 19 For a similar reduction see reference 12c.
	- 20 M. Kira and T. Iwamoto, "Silyl Migrations", In *Chemistry of Organsilicon Compounds, Vol. 3*, Z. Rappoport and Y. Apeloig Ed., 2003, John Wiley & Sons, Ltd, Chichester, UK.
	- 21 R. D. Crouch, *Tetrahedron*, 2004, **60**, 5833.
	- 22 D. B. Dess and J. C. Martin, *J. Org. Chem.*, 1983, **48**, 4155.
	- 23 E. Moulin, C. Nevado, J. Gagnepain, G. Kelter, F. Heinz-Helbert and A. Furstner, ¨ *Tetrahedron*, 2010, **66**, 6421–6428.
- 24 Review: E. J. Corey and C. Helal, *Angew. Chem., Int. Ed.*, 1998, **37**, 1986.
- 25 (a) M. Chérest, H. Felkin and N. Prudent, *Tetrahedron Lett.*, 1968, **9**, 2199; (*b*) M. Cherest and H. Felkin, ´ *Tetrahedron Lett.*, 1968, **9**, 2205.
- 26 M. Zaidlewicz and M. M. Pakulski, "Reduction of carbonyl groups: transfer hydrogenation, hydrosilylation, catalytic hydroboration, and reduction with borohydrides, aluminum hydrides, or boranes", In *Science of Synthesis, Stereoselective Synthesis*, J. G. De Vries, G. A. Molander and P. A. Evans Ed., 2011, *2*, 59–131.
- 27 The stereochemistry of the C23-*O*H was determined by Mosher ester analysis of compound **4**. See the ESI† for details.
- 28 E. M. Driggers, S. P. Hale, J. Lee and N. K. Terrett, *Nat. Rev. Drug Discovery*, 2008, **7**, 608.
- 29 L. B. Smart, F. Vojdani,M.Maeshima and T. A.Wilkins,*Plant Physiol.*, 1998, **116**, 1539.
- 30 J. Von der Fecht-Bartenbach, M. Bogner, M. Krebs, Y.-D. Stierhof, K. Schumacher and U. Ludwig, *Plant Journal*, 2007, **50**, 466.
- 31 K. Schumacher, D. Vafeados, M. McCarthy, H. Sze, T. Wilkins and J. Chory, *Genes Dev.*, 1999, **13**, 3259.
- 32 See the ESI† for details.
- 33 Assays were performed up to concentrations of $100 \mu M$.
- 34 (*a*) S. Gagliardi, P. A. Gatti, P. Belfiore, A. Zocchetti, G. D. Clarke and C. Farina, *J. Med. Chem.*, 1998, **41**, 1883; S. Gagliardi, M. Rees and C. Farina, *Curr. Med. Chem.*, 1999, **6**, 1197.